Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Paediatr Dent ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38013205

RESUMO

BACKGROUND: In order to generate a normal set of teeth, fine-tuning of Wnt/ß-catenin signaling is required, in which WNT ligands bind to their inhibitors or WNT inhibitors bind to their co-receptors. Lrp4 regulates the number of teeth and their morphology by modulating Wnt/ß-catenin signaling as a Wnt/ß-catenin activator or inhibitor, depending on its interactions with the partner proteins, such as Sostdc1 and Dkk1. AIM: To investigate genetic etiologies of dental anomalies involving LRP4 in a Thai cohort of 250 children and adults with dental anomalies. DESIGN: Oral and radiographic examinations and whole exome sequencing were performed for every patient. RESULTS: Two novel (p.Leu1356Arg and p.Ala1702Gly) and three recurrent (p.Arg263His, p.Gly1314Ser, and p.Asn1385Ser) rare variants in low-density lipoprotein receptor-related protein 4 (LRP4: MIM 604270) were identified in 11 patients. Oral exostoses were observed in five patients. CONCLUSION: Antagonism of Bmp signaling by Sostdc1 requires the presence of Lrp4. Mice lacking Lrp4 have been demonstrated to have alteration of Wnt-Bmp-Shh signaling and an abnormal number of incisors. Therefore, the LRP4 mutations found in our patients may disrupt Wnt-Bmp-Shh signaling, thereby resulting in dental anomalies and oral exostoses. Root maldevelopment in the patients suggests an important role of LRP4 in root morphogenesis.

2.
Diagnostics (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046432

RESUMO

BACKGROUND: Supernumerary teeth refer to extra teeth that exceed the usual number of dentitions. A mesiodens is a particular form of supernumerary tooth, which is located in the premaxilla region. The objective of the study was to investigate the genetic etiology of extra tooth phenotypes, including mesiodens and isolated supernumerary teeth. METHODS: Oral and radiographic examinations and whole-exome sequencing were performed on every patient in our cohort of 122 patients, including 27 patients with isolated supernumerary teeth and 94 patients with mesiodens. A patient who had multiple supernumerary teeth also had odontomas. RESULTS: We identified a novel (c.8498A>G; p.Asn2833Ser) and six recurrent (c.1603C>T; p.Arg535Cys, c.5852G>A; p.Arg1951His, c.6949A>T; p.Thr2317Ser; c.1549G>A; p.Val517Met, c.1921A>G; p.Thr641Ala, and c.850G>C; p.Val284Leu) heterozygous missense variants in FREM2 in eight patients with extra tooth phenotypes. CONCLUSIONS: Biallelic variants in FREM2 are implicated in autosomal recessive Fraser syndrome with or without dental anomalies. Here, we report for the first time that heterozygous carriers of FREM2 variants have phenotypes including oral exostoses, mesiodens, and isolated supernumerary teeth.

3.
Biology (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979085

RESUMO

A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.

4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901686

RESUMO

The activation of Wnt/ß-catenin signalling is a prerequisite for odontogenesis. APC, a member of the AXIN-CK1-GSK3ß-APC ß-catenin destruction complex, functions to modulate Wnt/ß-catenin signalling to establish regular teeth number and positions. APC loss-of-function mutations are associated with the over-activation of WNT/ß-catenin signalling and subsequent familial adenomatous polyposis (FAP; MIM 175100) with or without multiple supernumerary teeth. The ablation of Apc function in mice also results in the constitutive activation of ß-catenin in embryonic mouse epithelium and causes supernumerary tooth formation. The objective of this study was to investigate if genetic variants in the APC gene were associated with supernumerary tooth phenotypes. We clinically, radiographically, and molecularly investigated 120 Thai patients with mesiodentes or isolated supernumerary teeth. Whole exome and Sanger sequencing identified three extremely rare heterozygous variants (c.3374T>C, p.Val1125Ala; c.6127A>G, p.Ile2043Val; and c.8383G>A, p.Ala2795Thr) in APC in four patients with mesiodentes or a supernumerary premolar. An additional patient with mesiodens was compound as heterozygous for two APC variants (c.2740T>G, p.Cys914Gly, and c.5722A>T, p.Asn1908Tyr). Rare variants in APC in our patients are likely to contribute to isolated supernumerary dental phenotypes including isolated mesiodens and an isolated supernumerary tooth.


Assuntos
Polipose Adenomatosa do Colo , Dente Supranumerário , Animais , Humanos , Camundongos , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , beta Catenina/genética , Genes APC , Dente Supranumerário/complicações , Dente Supranumerário/genética
5.
Biology (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829498

RESUMO

BACKGROUND: Low density lipoprotein receptor-related protein 4 (LRP4; MIM 604270) modulates WNT/ß-catenin signaling, through its binding of WNT ligands, and to co-receptors LRP5/6, and WNT inhibitors DKK1, SOSTDC1, and SOST. LRP4 binds to SOSTDC1 and WNT proteins establishing a negative feedback loop between Wnt/ß-catenin, Bmp, and Shh signaling during the bud and cap stages of tooth development. Consistent with a critical role for this complex in developing teeth, mice lacking Lrp4 or Sostdc1 have multiple dental anomalies including supernumerary incisors and molars. However, there is limited evidence supporting variants in LRP4 in human dental pathologies. METHODS: We clinically, radiographically, and molecularly investigated 94 Thai patients with mesiodens. Lrp4 mutant mice were generated in order to study the effects of aberrant Lrp4 expression in mice. RESULTS: Whole exome and Sanger sequencing identified three extremely rare variants (c.4154A>G, p.Asn1385Ser; c.3940G>A, p.Gly1314Ser; and c.448G>A, p.Asp150Asn) in LRP4 in seven patients with mesiodens. Two patients had oral exostoses and two patients had root maldevelopments. Supernumerary incisors were observed in Lrp4 mutant mice. CONCLUSIONS: Our study implicates heterozygous genetic variants in LRP4 as contributing factors in the presentation of mesiodens, root maldevelopments, and oral exostoses, possibly as a result of altered WNT/ß-catenin-BMP-SHH signaling.

6.
Eur J Orthod ; 45(3): 317-323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36374649

RESUMO

BACKGROUND: Canonical and non-canonical WNT signaling are important for odontogenesis. WNT ligand secretion mediator (WLS; MIM611514) is required to transport lipid-modified WNT proteins from the Golgi to the cell membrane, where canonical and non-canonical WNT proteins are released into the extracellular milieu. Biallelic pathogenic variants in WLS are implicated in autosomal recessive Zaki syndrome (ZKS; MIM 619648), the only genetic condition known to be caused by pathogenic variants in WLS. OBJECTIVE: To investigate molecular etiology of dental anomalies in 250 patients with or without oral exostoses. PATIENTS AND METHODS: Clinical and radiographic examination, and whole exome sequencing, were performed in the case of 250 patients with dental anomalies with or without oral exostoses. RESULTS: Four extremely rare heterozygous missense variants (p.Ile20Thr, p.Met46Leu, p.Ser453Ile and p.Leu516Phe) in WLS were identified in 11 patients with dental anomalies. In five of these patients, a torus palatinus or a torus mandibularis was observed. CONCLUSION: We report for the first time the heterozygous WLS variants in patients with dental anomalies. Root maldevelopments in patients with WLS variants supports the role of canonical and non-canonical WNT signaling in root development. We also show that variants in WLS were implicated in torus palatinus and torus mandibularis. In addition, this is the first time that heterozygous carriers of WLS variants were found to manifest phenotypes. WLS variants were likely to have adverse effects on the concentration of WNT ligands delivered to the cell membrane, resulting in aberrant canonical and non-canonical WNT signaling, and subsequent phenotypes. LIMITATIONS OF THE STUDY: Patient's positioning during the acquisition of panoramic radiography might have affected the appearance of the tooth structures. If we had all family members of each patient to study co-segregation between genotype and phenotype, it would have strengthened the association of WLS variants and the phenotypes.


Assuntos
Exostose , Dente , Humanos , Exostose/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Odontogênese/genética , Mutação
7.
Genes (Basel) ; 13(10)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36292735

RESUMO

Objective: To report the clinical and radiographic findings and molecular etiology of the first monozygotic twins affected with Pfeiffer syndrome. Methods: Clinical and radiographic examination and whole exome sequencing were performed on two monozygotic twins with Pfeiffer syndrome. Results: An acceptor splice site mutation in FGFR2 (c.940-2A>G) was detected in both twins. The father and both twins shared the same haplotype, indicating that the mutant allele was from their father's chromosome who suffered severe upper airway obstruction and subsequent obstructive sleep apnea. Hypertrophy of nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Increased intracranial pressure in both twins were corrected early by fronto-orbital advancement with skull expansion and open osteotomy, in order to prevent the more severe consequences of increased intracranial pressure, including hydrocephalus, the bulging of the anterior fontanelle, and the diastasis of suture. Conclusions: Both twins carried a FGFR2 mutation and were discordant for lambdoid synostosis. Midface hypoplasia, narrow nasal cavities, and hypertrophic nasal turbinates resulted in severe upper airway obstruction and subsequent obstructive sleep apnea in both twins. Hypertrophy of the nasal turbinates appears to be a newly recognized finding of Pfeiffer syndrome. Fronto-orbital advancement with skull expansion and open osteotomy was performed to treat increased intracranial pressure in both twins. This is the first report of monozygotic twins with Pfeiffer syndrome.


Assuntos
Acrocefalossindactilia , Obstrução das Vias Respiratórias , Apneia Obstrutiva do Sono , Humanos , Acrocefalossindactilia/genética , Acrocefalossindactilia/cirurgia , Acrocefalossindactilia/diagnóstico , Gêmeos Monozigóticos/genética , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/cirurgia , Hipertrofia
8.
Arch Oral Biol ; 142: 105514, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961235

RESUMO

OBJECTIVE: The objective of this study was to investigate molecular etiologies of oral exostoses and dental anomalies in 14 patients from eight families. METHODS: Oral and radiographic examinations were performed on every patient. Whole exome and Sanger sequencing were performed on DNA of the patients, the unaffected parents and unaffected siblings. LRP6 mutant proteins were modeled and analyzed. RESULTS: Five mutations in LRP6, including four missense (p.Glu72Lys, p.Lys82Asn, Tyr418His, and p.Ile773Val) and one nonsense mutation (p.Arg32Ter), were identified. These mutations have not been reported to be associated with dental anomalies or oral exostoses. Oral features included a variety of oral exostoses (7 of the 14 patients), root defects (6 of the 14 patients), and tooth agenesis (5 of the 14 patients). Less common dental anomalies included microdontia, tooth fusion, odontomas, and mesiodens. Analysis of the protein models of the five LRP6 mutations shed light on their likely impact on LRP6 protein structure and function. CONCLUSION: Fourteen patients with five LRP6 mutations, including two recurrent mutations and three novel ones, are reported. Our study shows for the first time that mutations in LRP6 are associated with mesiodens, fusion of teeth, odontomas, microdontia, long roots, molars with unseparated roots, and taurodontism.


Assuntos
Exostose , Odontoma , Anormalidades Dentárias , Dente Supranumerário , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Anormalidades Dentárias/genética , Via de Sinalização Wnt
9.
Clin Genet ; 102(4): 333-338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35754005

RESUMO

WNT/ß-catenin and BMP signaling pathways play important roles in the process of tooth development. Dysregulation of WNT/ß-catenin and BMP signaling is implicated in a number of human malformations, including dental anomalies. Whole exome and Sanger sequencing identified seven patients with LRP5 mutations (p.Asn1121Asp, p.Asp856Asn, p.Val1433Met, and p.Val1245Met) and six patients with BMP4 mutations (p.Asn150Lys, p.Gly168Arg, p.Arg269Gln, and p.Ala42Glu). All patients were affected with isolated dental anomalies (dental anomalies with no other structural defects), including mesiodens, tooth agenesis, unseparated roots, narrow roots, shortened and tapered roots, and taurodontism. Five patients with LRP5 and one with BMP4 mutations had oral exostoses. Protein models of LRP5 mutations indicate the possible functional effects of the mutations. Here we report for the first time that mutations in LRP5 are associated with dental anomalies. LRP5 appears to be the first gene related to pathogenesis of mesiodens. We also show for the first time that in addition to tooth agenesis, mutations in BMP4 are also implicated in root maldevelopment and torus mandibularis. Sharing of the phenotypes of the patients with LRP5 and BMP4 mutations, which include root maldevelopment, tooth agenesis, and torus mandibularis, implicates cross talks between the WNT/ß-catenin and BMP signaling pathways, especially during root development.


Assuntos
Anodontia , Proteína Morfogenética Óssea 4 , Exostose , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Anormalidades Dentárias , Anodontia/genética , Proteína Morfogenética Óssea 4/genética , Exostose/genética , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Anormalidades Dentárias/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...